J'ai trouvé cette bien jolie explication de la démonstration du théorème de Pythagore par Euclide. Comment ne pas aimer la géométrie après ça?
Avant de la lire, voici le texte d'Euclide:
Dans les triangles rectangles, le carré sur le côté sous-tendant l'angle droit est égal aux carrés sur les côtés contenant l'angle droit.
Soit le triangle rectangle ABC ayant l'angle sous BAC droit. Je dis que le carré sur BC est égal aux carrés sur BA, AC.
En effet d'une part que le carré BDEC soit décrit sur BC, d'autre part les carrés GB, HC sur
BA, AC (Prop. 46) et que par le point A, soit menée AL, parallèle à l'une quelconque des BD, CE (Prop. 31). Et que AD, FC soient jointes (Dem. 1).
Puisque chacun des angles sous BAC, BAG est droit, alors relativement à une certaine droite: BA, et en un point qui est sur elle: A, les deux droites AC, AG, non placées du même côté, font des angles adjacents égaux à deux droits. Donc CA est en alignement avec AG (Prop. 14). Alors pour la même raison BA est aussi en alignement avec AH.
Et puisque l'angle sous DBC est égal à celui sous FBA car chacun est droit (Dem. 4), que celui sous ABC soit ajouté de part et d'autre: celui sous DBA tout entier est donc égal à celui sous FBC tout entier (N.C. 2).
Et puisque, d'une part DB est égale à BC, d'autre part FB à BA, alors les deux DB, BA sont égales aux deux FB, BC2, chacune à chacune et l'angle sous DBA est égal à celui sous FBC. La base AD {est} donc égale à la base FC, et le triangle ABD égal au triangle FBC (Prop. 4).
Et le parallélogramme BL {est} double du triangle ABD, car ils ont la même base BD, et sont dans les mêmes parallèles: BD, AL (Prop. 41). D'autre part le carré GB est double du triangle FBC, car, de nouveau, ils ont la même base FB, et sont dans les mêmes parallèles: FB, GC. {Or les doubles de choses égales sont égaux entre eux}3. Donc le parallélogramme BL est égal au carré GB (N.C. 1). Alors semblablement, AE et BK étant jointes, il sera démontré aussi que le parallélogramme CL est égal au carré HC. Donc le carré BDEC tout entier est égal aux deux carrés GB, HC, et, d'une part BDEC est le carré qui a été décrit sur BC, d'autre part GB et HC sont les carrés sur BA, AC. Donc le carré sur le côté BC est égal aux carrés sur les côtés BA, AC.
Donc, dans les triangles rectangles, le carré sur le côté sous-tendant l'angle droit est égal aux carrés sur les côtés contenant l'{angle} droit. Ce qu'il fallait démontrer.
mercredi, mai 14, 2008
Inscription à :
Publier les commentaires (Atom)
19 commentaires:
Très intéressant, même pour un mathématicien!
Bonjour,
Merci du commentaire.
En plus, il me semble que c'est d'une étonnante et émouvante beauté.
Normand
I loved as much as you'll receive carried out right here. The sketch is attractive, your authored subject matter stylish. nonetheless, you command get bought an edginess over that you wish be delivering the following. unwell unquestionably come more formerly again as exactly the same nearly a lot often inside case you shield this increase.
Feel free to surf to my web-site: chestfatburner.com
Hi! This is kind of off topic but I need some guidance from an established
blog. Is it very hard to set up your own blog? I'm not very techincal but I can figure things out pretty fast. I'm thinking about setting up my own but I'm not sure where to start. Do you have any points or suggestions? Thank you
My web blog Utilizing Testosterone Gel With Regard To Gynecomastiaremedy?
Good article! We are linking to this great post
on our website. Keep up the good writing.
Feel free to surf to my homepage - http://chestfatburner.com/is-liposuction-a-common-form-of-treatment-for-gynecomastia
For most recent information you have to pay
a quick visit web and on the web I found this website as a
best site for most up-to-date updates.
Feel free to surf to my blog Low cost treatment methods of gynecomastia
I loved as much as you'll receive carried out right here. The sketch is tasteful, your authored subject matter stylish. nonetheless, you command get got an shakiness over that you wish be delivering the following. unwell unquestionably come more formerly again as exactly the same nearly a lot often inside case you shield this hike.
Take a look at my web-site :: Is actually omeprazole successful regarding " moobs " remedy?
Very nice blog post. I absolutely love this site.
Keep writing!
my blog post: Chance aspects associated with Gynecomastia
Ahaa, its fastidious dialogue on the topic of this
piece of writing at this place at this weblog, I have read all that,
so now me also commenting here.
Here is my web-site; gynemax
Good info. Lucky me I came across your blog by accident (stumbleupon).
I have bookmarked it for later!
Feel free to visit my blog; The very best natural cure with regard to gynecomastiaand just how it works
I do not even understand how I finished up right here, but I thought this post was once good.
I do not understand who you might be but definitely
you're going to a famous blogger in case you are not already. Cheers!
Also visit my blog chestfatburner.com
Hey There. I found your weblog using msn. This is an extremely neatly written
article. I'll be sure to bookmark it and return to learn extra of your useful info. Thanks for the post. I'll certainly return.
My webpage Is gynecomastiasurgical treatment secure for your health?
Good answers in return of this difficulty with solid arguments and explaining the whole thing regarding that.
Visit my web site :: 100 yard rifle targets
So, if you want to enjoy a variety of photograph.
Teapots are classy, stylish and that way. I love to play cards Rummy, Euchre, Spades, so I really wanted to vote for though.
You can get them a second viewing. The other display, featuring
99 teapots theiere
and were sold in Amsterdam for 37 million guilders, or something.
You can put it in there. Yixing clay is leatherhard, which is
not necessary for scraping compressed tea cakes,
Ming tea drinkers.
Good day! This is kind of off topic but I need some guidance
from an established blog. Is it very hard to set up your own blog?
I'm not very techincal but I can figure things out pretty fast.
I'm thinking about making my own but I'm not sure where to begin. Do you have
any tips or suggestions? Thanks
my web blog diatomaceous earth johannesburg
A fascinating discussion is definitely worth comment. I believe that you need to
publish more about this subject, it may not be a taboo subject but
typically people don't discuss such subjects. To the next!
Best wishes!!
my blog ... steam wallet codes
hi!,I love your writing very much! proportion we communicate more
approximately your article on AOL? I require a specialist on this area to resolve my
problem. May be that's you! Taking a look forward to peer you.
Here is my blog: iphone 4s
Last although not minimal, the iPad 2 is oleophobic!
It is one of many best free programs for children. When I first viewed the
iPad I thought it had been fairly small.
Feel free to surf to my homepage: http://jannoah6.rollr.com/posts/iphone-jailbreak-convention-brings-renowned-hackers-to-san-franci... (http://jump2now.com)
nike lebron 16
yeezy shoes
jordans
off white x jordan 1
nike shoes
coach outlet online
adidas superstars
fila shoes
nike x off white
supreme
Enregistrer un commentaire